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Abstract—Spreadsheets are widely used, but subject to various
defects and severe consequences due to poor maintenance by end
users. Existing spreadsheet defect detection techniques fall short
of effectiveness, either due to limited scopes or relying on rigid
patterns. In this paper, we discuss and improve one state-of-
the-art technique, CUSTODES, which uses cell clustering and
anomaly detection to extend its scope and make its patterns
adaptive to varying spreadsheet styles, but is prone to fragile
clustering when involving irrelevant cells, leading to a largely
reduced detection precision. We present WARDER to refine
CUSTODES’s cell clustering based on validity properties, and
experimental results show that WARDER improves the precision
by 20.7% on average or reach 100% for 79.8% worksheets on
cell clustering, which contributes to a precision improvement of
23.1% for defect detection. WARDER also exhibits satisfactory
results, against other spreadsheet defect detection techniques, and
on another large-scale spreadsheet corpus VEnron2.

Index Terms—Spreadsheet testing, Cell clustering, Defect de-
tection, Validity Property

I. INTRODUCTION

Nowadays, spreadsheets have been widely used in data
storage, financial analyses, and quality control [40], and be-
come one of the most popular end-use environments with over
750 million users for representative Microsoft Excel alone
[9]. In spite of the popularity, spreadsheets are found to be
error-prone [37], and can cause catastrophic consequences,
e.g., massive financial loss [1]. Such errors can spread across
from data cells to formula cells in spreadsheets, and existing
studies [36] have suggested that the latter could typically be
the root causes. Within the scope of this paper, we name the
errors in formula cells as defects in spreadsheets, and focus
on effective techniques for their detection.

Detecting spreadsheet defects can be non-trivial. First,
spreadsheets are typically maintained by non-programmer end-
users, whose behaviors can involve various unprofessional
operations, e.g., overwriting a formula with a plain value or
replacing it with another plausible formula, simply for ad
hoc purposes [36]. This results in a boosting of spreadsheet
defects. Second, auditing or tracking services are typically
unavailable for common spreadsheet usages [29], and this
results in the loss of clues on how spreadsheet defects are
introduced and where they are. Third, semantic relationships
among spreadsheet cells are typically hidden, and this results
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in the difficulties in reasoning over spreadsheets for defects.
To address these challenges, our research community has pro-
posed various spreadsheet defect detection techniques. They
rely on header information to infer type inconsistencies in
formula references (e.g., UCheck [4] and Dimension [10]),
exploit rectangle patterns to recognize missing or inconsistent
formulas (e.g., AmCheck [14] and CACheck [15]), or use
adaptive learning to detect anomalies in formula cells (e.g.,
CUSTODES [11], Melford [42], and ExceLint [8]).

However, these spreadsheet defect detection techniques still
have their weaknesses. For the first category (type-based tech-
niques), their inference is vague and focuses on a quite limited
scope, resulting in both a low precision and recall rate [48].
For the second category (pattern-based techniques), their relied
patterns can be strict and precise for certain features in
spreadsheets (thus achieving a high precision, e.g., 71.9% for
AmCheck and 86.8% for CACheck [15]), but not adaptable
to varying styles in different spreadsheets (leading to a com-
promised recall rate, e.g., 60.3% for AmCheck and 71.0%
for CACheck [15]). For the third category (learning-based
techniques), they get increasingly popular in recent years due
to their adaptive learning abilities. We take CUSTODES [11]
for example, as it is considered to be the “best automated
error finder” [8]. CUSTODES clusters cells according to their
formula semantics, and at the same time restricts the impact
caused by the dissimilarity of faulty formulas and varying
styles across spreadsheets by learning features in different
spreadsheets. By doing so, it largely increases the recall rate
(80% [11]), but at the same time compromises the precision
somewhat (65% [11]) when clustering irrelevant cells together.

Regarding these weaknesses, we in this work propose a
novel technique WARDER1, based on the success of CUS-
TODES’s adaptive learning of varying styles (features) across
spreadsheet, but improving over its weakness when clustering
relevant and irrelevant cells together for defect detection. Our
key observation is that the clustering, if accidentally involving
irrelevant cells, would largely compromise the effectiveness of
defect detection (e.g., reducing the precision). Therefore, our
main efforts in WARDER focus on refining the cell clustering
to make it more robust by squeezing out irrelevant cells, while
preserving CUSTODES’s original adaptive learning ability.

1WARDER is named in a way following CUSTODES’s naming tradition.



The refinement is three-folded: (1) Single-cell validity. When
adding cells into a cluster, WARDER would reject those data
cells that can become invalid if cast to formulas for unification.
For example, when the data in a cell is replaced by a formula
for unification with other formula cells in the same cluster,
this formula is found to be invalid for calculation (e.g., citing
a wrong place or causing a wrong reference). Then such a
data cell should not be added into this cluster. (2) Multi-
cell validity. WARDER would also reject those data cells
from being added into a cluster if these cells, once added,
would violate some important properties of existing cells in
this cluster. For example, the references of existing cells in a
cluster do not overlap before adding a new data cell, but this
property would be violated if the cell is added and its contained
data is replaced by a formula for unification. Then this new
data cell should also not be added into this cluster. (3) Whole-
cluster validity. Other than cell-level validations, WARDER
also examines whole-cluster validity for thus formed clusters.
Since each cluster is formed with the aim for identifying
few anomalies as defects in spreadsheets, it should contain a
formula unifiable with most cells in this cluster. Otherwise,
the cluster itself is not qualified since it lacks a common
computational semantics [15], and should be canceled to avoid
later misbehavior in defect detection.

With these dedicated refinements, our WARDER exhibits
clear merits when compared to its predecessor CUSTODES, as
well as other popular spreadsheet defect detection techniques,
including UCheck, Dimension, AmCheck, and CACheck. For
example, regarding CUSTODES’s own benchmark of 291
worksheets (basic units in spreadsheets) selected from the EU-
SES corpus [16], WARDER achieved a significant improve-
ment, as compared to CUSTODES, on cell clustering by boost-
ing 79.8% worksheets, either with a precision improvement of
0.3–94.6% (20.7% on average) or already reaching their upper
precision limit (100%), with a small sacrifice of 2.4% on the
average recall rate. For defect detection, WARDER’s effective
cell clustering contributed to its defect detection by achieving
23.1% precision improvement, as compared to CUSTODES.
Combining the recall rate, this leads to an increase of F-
measure from 0.71 to 0.79. WARDER also outperformed
other spreadsheet defect detection techniques by an average
precision of 87.8% and recall rate of 71.9%, against 0.5–72.4%
and 0.1–68.4% for other techniques, respectively. Moreover,
regarding a much larger-scale corpus VEnron2 [45], which
contains 1,609 versioned groups refined from original 79,983
worksheets in the Enron corpus [21], WARDER also exhibited
its unique superiority over other techniques (41.3% against
16.3–34.3% on the precision).

In summary, this paper makes the following contributions:
• We proposed WARDER, which refines CUSTODES’s cell

clustering by three validations on cell and cluster validity
properties to improve the effectiveness of spreadsheet
defect detection.

• We evaluated WARDER comprehensively with both ex-
isting benchmark spreadsheets and a large-scale spread-
sheet corpus, and compared it with existing popular

spreadsheet defect detection techniques.
The remainder of this paper is organized as follows. Section

II introduces background knowledge on spreadsheet and its
defect detection. Section III proposes our WARDER tech-
nique, built on CUSTODES. Section IV evaluates experimen-
tally WARDER with practical spreadsheets and compares it
with existing defect detection techniques. Finally, Section V
discusses the related work in recent years, and Section VI
concludes this paper.

II. BACKGROUND

In this section, we introduce necessary background knowl-
edge about spreadsheet and its defect detection.

A. Spreadsheet

Spreadsheet. A spreadsheet refers to a stand-alone spread-
sheet file in a file system. For example, in Microsoft Excel,
each opened Excel file is a spreadsheet, which is named like
A.xls and B.xlsx.

Worksheet. A worksheet refers to a single sheet page inside
a spreadsheet. Normally, a spreadsheet can contain multiple
worksheets separated for different data storage and calculation
purposes.

Cell. A worksheet can contain multiple cells, each of which
is referred to by a column number (e.g., A, B, and C) and a row
number (e.g., 1, 2, and 3). A cell is the minimal information
piece in a worksheet, which can contain a (numeric) data2

(e.g., 200), formula (e.g., A1 + B2), or text string (e.g., “Fruit”
or “----”) for formatting purposes (e.g., as a table header or
delimiter). In the scope of this paper, we are interested in
the former two, as they are also the main focus of existing
spreadsheet defect detection techniques, and in this case, they
are referred to as a data cell and formula cell, respectively. A
data cell contains a numeric data, which can serve as the input
to other formula cells, and a formula cell contains a formula,
which can automatically update its corresponding value as
calculated from other (data or formula) cells whose values
serve as the input to this formula.

Reference. References occur to formula cells. When the
data contained in a data cell serves as the input to a formula
cell, we say that this formula cell (or simply this formula)
references this data cell and the latter is referred to as a
referenced cell.

B. Defect Detection

As mentioned earlier, spreadsheets can contain various
defects in their formula cells. We introduce two major defect
types that are all covered by, and the main focus of, existing
spreadsheet defect detection techniques.

Missing formula defect. This defect occurs when a cell
contains a data instead of a formula, whose calculation is
supposed towards this data value. For example, cell C3 was
originally defined by formula A1 + B2. Due to some unknown

2Some papers may consider text strings also as data, i.e., their data cells can
contain both numbers and text strings. With this clarified, slightly different
definitions will not affect our subsequent discussions.
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Fig. 1: Workflow of the WARDER technique (Stage3 is its main contributions over its predecessor CUSTODES)

reason, its user overwrote this formula by a plain value 5. It
is possible that this formula happens to have this value as its
calculation result, and in this case, this defect becomes hidden
for now, but would be triggered later when cell A1 or B2 has
its value updated.

Inconsistent formula defect. This defect occurs when a
cell contains a formula different from those in its surrounding
formula cells but in fact it should not. For example, a column
(e.g., C) of cells is supposed to calculate the sum of its
previous two columns (e.g., C1 = A1 + B1, C2 = A2 + B2,
and so on). Suppose that one formula was mistakenly written
as C2 = A2 − B2 or C2 = A2, but this defect can be hidden if
cell B2 happens to contain a value of zero, although it would
be triggered later when cell B2 has its value updated.

A spreadsheet defect may not immediately trigger any visi-
ble error in concerned data values, and therefore some pieces
of work would consider them as smells or anomalies [23],
depending on their severity levels. Nevertheless, detecting
them for timely fixing is important, as spreadsheet users are
not programming experts and not sensible to such hidden
defects, which can easily grow into catastrophic financial
losses in future.

III. WARDER TECHNIQUE

In this section, we propose and elaborate on our WARDER
technique for effective spreadsheet defect detection, which
is built on the CUSTODES technique. We first introduce
WARDER’s workflow, as well as its connections to CUS-
TODES. We then present WARDER’s three key refinements
for better cell clustering based on validity properties in detail.

A. WARDER’s Workflow

As shown in Fig. 1, WARDER, with CUSTODES in-
tegrated, follows four stages to cluster relevant cells in a
worksheet together and detect defects in each cluster.

First, WARDER uses CUSTODES to form an initial set of
seed clusters that each contain cells of similar strong features,
(e.g., cell formulas and reference relations). This stage is for
each initial cluster to own a common computational semantics.
Second, WARDER uses CUSTODES to expand each seed
cluster with remaining cells that are left from the first stage,
as long as these added cells share weak features (e.g., spatial
relations, fonts, colors, and layouts) with those already in the
cluster. This stage is for retrieving back those cells that were
previously not put into seed clusters due to the impact of
their contained faulty formulas or varying styles across tables.
Third, WARDER refines the current clusters by squeezing out
those cells from them, which violate the validity properties
(i.e., single-cell, multi-cell, and whole-cluster ones) associated
with these cell clusters. This stage is for improving the cell
clustering by identifying irrelevant cells and unqualified clus-
ters. Fourth, WARDER uses CUSTODES to classify anomalies
in each qualified cell cluster, and report them as defects to
users. This stage is for detecting defects (i.e., faulty cells
that contain missing formula or inconsistent formula issues)
in clusters of cells with common computational semantics.

CUSTODES is nice in retrieving back many cells into
initial clusters in order to improve its recall rate in defect
detection [11]. However, the retrieval is aggressive in that it
could involve quite a few irrelevant cells, which instead impact
the precisions of both cell clustering and defect detection for
spreadsheets. This is also the target of our WARDER’s three



Fig. 2: Worksheet “Summary1201” for illustrating WARDER’s
single-cell validity refinement. There is one cluster marked
in purple by CUSTODES, leading to four wrongly reported
defects as annotated with red triangle marks, while these four
cells would be squeezed out from the cluster by WARDER’s
single-cell validity refinement, and no longer be wrongly
reported as defects.

refinements, as we elaborate in detail below.

B. Single-cell Validity Refinement

The first refinement concerns, when WARDER (following
CUSTODES) expands initial seed clusters with additional data
cells, whether such cells to add are valid themselves. Note
that it may be difficult to tell whether these cells are valid or
not directly, since they contain plain values only, without any
visible relationship with other cells. Nevertheless, since these
cells to add and original cells in the target cluster are to be
merged together, they should share a common computational
semantics according to the cell cluster definition. Then, these
cells to add should be unifiable with some formula as those
original cells. To validate this expectation, WARDER would
test all formulas existing in the original cells in the cluster, to
see whether any of them can fit in these cells to add. Here, “fit”
means that such a formula, once replacing the plain value in
a data cell to add, would still be computable. Otherwise, if all
formulas are tested to be failed, e.g., citing a wrong place or
causing a wrong reference, the data cell to add is problematic,
and should be prevented from being added into this cluster.
This is known as the single-cell validity refinement.

Fig. 2 gives one example by worksheet “Summary1201”, in
which 25 cells (B11, B13, B14, B16, D11-–17, F11-–17, and
H11-–17) are clustered together (in purple) by CUSTODES.
CUSTODES detected six defects (annotated with red triangle
marks), in which two (F17 and H15) are true positives (missing
formula defects) and the other four (B11, B13, B14, and
B16) are false positives. The latter four data cells were
retrieved into this cluster due to their shared weak features
(e.g., similar headers and layouts) with original cells in the
cluster by CUSTODES. However, such retrieval is problematic
according to WARDER’s single-cell validity refinement. In
fact, if any of the four data cells is considered into the cluster,
one has to unify its contained data with a formula unifiable
with other cells in this cluster. For example, considering cell
B11, the best candidate for its unifiable formula could be
“=(A11/A$21)*100”, following the pattern shared by other
cells in this cluster. However, this formula is non-computable,
as both A11 and A$21 refer to a text string, which cannot par-

Fig. 3: Worksheet “Detail for the College of A&S” for
illustrating WARDER’s multi-cell validity refinement. There
is one cluster marked in yellow by CUSTODES, leading to
six wrongly reported defects as annotated with red triangle
marks, while these six cells would be squeezed out from the
cluster by WARDER’s multi-cell validity refinement, and no
longer be wrongly reported as defects.

ticipate into any arithmetic calculation. Similar problems occur
to cells B13, B14, and B16 as well. Therefore, WARDER
would reject such data cells from being added into this cluster.

C. Multi-cell Validity Refinement

The second refinement concerns, when WARDER expands
initial seed clusters with additional data cells, whether such
cells to add will not break existing multi-cell properties of
original cells in a cluster. We take references of a cell for
example, which are an important feature of spreadsheet cells.
Suppose that the references of original cells in a cluster never
overlap with each other. Then we would expect that a data cell
to add should also not violate this property, when it is added
into this cluster and its contained data is replaced by a formula
for unification with other cells in this cluster. This expectation
can also be expressed in a reversed way, i.e., references, if
already overlapping with each other for original cells in a cell
cluster, should not encounter non-overlapping cases for new
data cells to add. That is, the property should keep consistent
for all cells in this cluster, and can be considered as an editing
style across spreadsheet tables. Otherwise, the concerned data
cell is considered problematic, and should be prevented from
being added into this cluster. This is known as the multi-cell
validity refinement.

Fig. 3 gives one example by worksheet “Detail for the
College of A&S”, in which 9 cells (AA8, AB8, AC8, AE8,
AF8, AG8, AL8, AM8, and AN8) are clustered together
(in yellow) by CUSTODES. CUSTODES then detected six
defects (AA8, AB8, AE8, AF8, AL8, and AM8) simply due
to their contained plain values (missing formula defects)), but
all of them are false positives. On the other hand, WARDER
would reject adding the six data cells (AA8, AB8, AE8, AF8,
AL8, and AM8) into the cluster, and thus avoid detecting
them as defects. In fact, the six data cells do not share a
common computational semantics as the other three formula
cells (AC8, AG8, and AN8). The former data cells refer to
some specific values, which are directly from users, while the
latter formula cells calculate the sums of several cells left to
them. WARDER distinguishes them by its multi-cell validity
refinement: the references of the latter three formula cells do
not overlap, but this property would be violated if merging
the former six data cells with them together and replacing
the data of the former with any formula found in the latter
cells. For example, when the data in cell AF8 is replaced by



Fig. 4: Worksheet “World 1996” for illustrating WARDER’s
whole-cluster validity refinement. There is one cluster marked
in yellow by CUSTODES (wrongly clustered), leading all the
associated cells to be wrongly reported defects as annotated
with red triangle marks, while this cluster would be removed
by WARDER’s whole-cluster validity refinement, and its as-
sociated cells would no longer be wrongly reported as defects.

a formula “SUM(AD8:AE8)” by following the pattern of cell
AG8, its references (AD8 and AE8) would overlap with cell
AG8’s references (AE8 and AF8). Similar problems occur to
cells AA8, AB8, AE8, AL8, and AM8 as well. Therefore,
WARDER would also reject such data cells from being added
into this cluster.

D. Whole-cluster Validity Refinement

The last refinement concerns the validity of finally formed
cell clusters, i.e., it focuses on cluster-level rather cell-level
validity properties. It is expected that a cell cluster should
follow a common computational semantics in terms of a
unified formula that can cover most cells in this cluster.
WARDER would test all existing formulas available in this
cluster, and if none of them can serve for this purpose, it
would consider this cluster unqualified and cancelling it from
further actions to avoid misbehavior (e.g., considering most
cells as defects, which turn out to be mostly false positives)
in later anomaly detection. This is known as the whole-cluster
validity refinement.

Fig. 4 gives one example by worksheet “World 1996”,
in which ten cells are clustered together (in yellow) by
CUSTODES. CUSTODES then detected seven out of them
as defects, but all of them are false positives. In fact, the ten
cells contain almost totally different formulas (five patterns),
which strongly indicate that they essentially follow different
computational semantics. By its whole-cluster validity refine-
ment, WARDER would reject the whole cluster. Note that
WARDER needs a threshold value to control the judgment
of “covering most cells”. To play safe, WARDER chooses a
conservative value of 50% to protect as many cell clusters as
possible (CACheck chose a more aggressive value of 70%).

E. Refinement Process

According to their dependency, WARDER’s three validity
refinements are applied in turn. They complement each other
and work at different levels (from single-cell, to multi-cell,
and finally whole-cluster validities). They aim to together
improve the cell clustering to make it more robust, eventually
contributing to WARDER’s spreadsheet defect detection, as
our following evaluation shows.

TABLE I: Statistics of our experimental subjects

# spreadsheets # worksheets # cells # formula
cells

# cell
clusters

# defects
(faulty cells)

70 291 189,027 26,716 1,610 1,974

IV. EVALUATION

In this section, we evaluate our WARDER technique and
compare it to existing spreadsheet defect detection techniques.

We implemented WARDER in Java and used Apache
POI [2] to manipulate spreadsheets. It contains a total of
7,300 lines of Java code, with about 2,500 lines added to,
or modified from, CUSTODES’s original code. Like CUS-
TODES, WARDER also annotates its analyzed spreadsheet
cells by means of comments, indicating what defects are
associated with the commented cells (e.g., missing formula
or inconsistency formula defects).

A. Research Questions

We aim to answer the following three research questions:
• RQ1 (Effectiveness): How effective is WARDER in (cell

clustering and) defect detection, as compared to existing
spreadsheet defect detection techniques?

• RQ2 (Correlation): Does WARDER’s improved cell clus-
tering contribute to its defect detection on the precision?

• RQ3 (Individual impacts): How do WARDER’s three
validity refinements contribute to its effectiveness on
defect detection?

B. Experimental Design and Setup

Subjects. To facilitate WARDER’s comparison with its
predecessor CUSTODES, we selected CUSTODES’s own
benchmark, which was originally sampled from the EUSES
corpus [16], as our experimental subjects. The benchmark
contains 70 spreadsheets and 291 worksheets, as shown in
Table I. The 291 worksheets contain 189,027 cells, among
which 26,716 are formula cells. The benchmark also contains
ground truths, which annotate 1,610 cell clusters and among
them 1,974 defects (faulty cells with missing or inconsistent
formula issues), for evaluation purposes.

Techniques. We compare our WARDER with five afore-
mentioned spreadsheet defect detection techniques, namely,
UCheck, Dimension, AmCheck, CACheck, and CUSTSODES.
We obtained their implementations from their respective au-
thors. We compare WARDER with these techniques on their
defect detection effectiveness. For CUSTODES, we addition-
ally compare their cell clustering effectiveness.

To study individual impacts (RQ3) of WARDER’s three
validity refinements, we configured to enable them individually
in experiments, which are named WARDER-sc (with single-
cell validity), WARDER-mc (with multi-cell validity), and
WARDER-wc (with whole-cluster validity). Then the con-
figuration with all the three refinements enabled is named
WARDER-full or WARDER directly.

Metrics. Regarding the effectiveness on defect detection, we
first measure the number of detects reported by a technique
and also in the ground truths (TP), that reported but not in



TABLE II: Defect detection results for the six spreadsheet
defect detection techniques

Technique Detected TP FP precisiond recalld F -measured
UCheck 204 1 203 0.5% 0.1% 0.00

Dimension 1,824 14 1,828 0.8% 0.7% 0.01
AmCheck 2,372 1,316 1,030 56.1% 66.7% 0.61
CACheck 1,866 1,350 516 72.3% 68.4% 0.70

CUSTODES 2,380 1,539 841 64.7% 78.2% 0.71
WARDER 1,612 1,415 197 87.8% 71.9% 0.79

50
17.7%

194
68.8%

31
11.0%

7
2.5%

No precision change (<100%) No precision change (=100%)

Precision improved Precision reduced

(a) Precision comparison (in terms of affected work-
sheets)

87.5% 85.1%

0%

20%

40%

60%

80%

100%

CUSTODES WARDER

(b) Recall rate comparison (overall)

Fig. 5: Cell clustering results for CUSTODES and WARDER

the ground truths (FP), and that in the ground truths but not
reported (FN). Based on them, we calculate precisiond = TP
/ (TP + FP), recalld = TP / (TP + FN), and F -measured =
2× precisiond × recalld/(precisiond + recalld) to measure
the technique’s effectiveness on spreadsheet defect detection.

Regarding the effectiveness on cell clustering (applicable to
WARDER and CUSTODES), we follow CUSTODES’s pair-
wise similarity comparison [11] to calculate TP, FP, and FN.
We then calculate a technique’s effectiveness on cell clustering
by precisionc, recallc, and F -measurec in a similar way.

Environment. All experiments were conducted on a com-
modity PC with an Intelr Core™ i7-6700 CPU @3.41GHz
with 64GB RAM. The machine was installed with Microsoft
Windows 10 Professional and Oracle Java 8.

C. Experimental Results and Analyses

In the following, we analyze the experimental results and
answer the three research questions in turn.

1) RQ1: Effectiveness. We first evaluate WARDER’s effec-
tiveness on cell clustering and defect detection, and compare
it to the other five spreadsheet defect detection techniques.

Regarding defect detection, Table II compares the results for
all the six techniques, which include precision, recall rate, and
F-measure values, as well as the statistics of detected defects

and their contained true positives and false positives. From the
table, we observe that: (1) UCheck and Dimension obtained
only very low scores (less than 1% for precision and recall
rate, and 0.1 for F-measure) due to their limited analysis scope,
echoing earlier studies [48]; (2) AmCheck and CACheck ob-
tained much higher scores (56.1–72.3% precision, 66.7–68.4%
recall rate, and 0.61–0.70 F-measure) due to their effective
analysis patterns (e.g., cell arrays); (3) CUSTODES obtained
a slightly better score (0.71 F-measure) than CACheck, with a
focus on the recall rate (78.2% against 68.4% for CACheck);
(4) WARDER, as expected, focuses on improving the precision
and obtained a large improvement from 64.7% to 87.8%,
leading to a final jump on the F-measure from 0.71 to 0.79
(the highest among all), even with a small sacrifice on the
recall rate of about 6%, as against CUSTOEDES. One may
concern that CUSTODES detected more true positives (124)
than WARDER, but this was accompanied with much more
false positives (644), which can be overwhelming for manual
inspection.

Regarding cell clustering, Fig. 5 compares the results for
CUSTODES and WARDER, which include precision and
recall rate. For the precision (Fig. 5a), we partition 282
worksheets containing at least one cluster out of the total of
291 ones into four categories: (1) WARDER improved the
precision for 31 worksheets, and reduced for 7 ones; (2) the
precision kept unchanged for 244 worksheets, in which 194
ones already reached 100% (i.e., upper limit). In other words,
WARDER improved the cell clustering for 225 worksheets
(79.8%), either by improving the precision or already reaching
their upper limit of 100%. We further look into details for the
38 worksheets with precision changes (Fig. 6). We observe that
WARDER improved the cell clustering precision by 0.3% to
94.6% (20.7% on average), and the improvement gains are sig-
nificant, much more than those lost due to reduced precisions.
Besides, we also note that WARDER’s effectiveness on the
precision improvement came only with a marginal reduction
on the recall rate of 2.4% (Fig. 5b).

From Fig. 6, we observe that WARDER improved cell
clustering for most worksheets, but one may notice one
exception for worksheet “Detail for College ...”, where its
precision dropped from 100% to zero. We further looked into
this case. The ground truths suggest that cells {O11, W11,
Z11, AD11, AR11} should be clustered together, as illustrated
in green in Fig. 7. CUSTODES “correctly” clustered these
cells together, but WARDER did not. However, we found that
these five cells actually contain different formulas, and they
thus violate WARDER’s whole-cluster validity property (there
is no common computational semantics shared among most of
these cells). This explains why WARDER rejected this cluster
(potentially flaw of the ground truths). In fact, this cell cluster
indeed does not contain any defect. Therefore, this precision
dropping on cell clustering did not affect WARDER’s defect
detection ability.

In summary, to answer research question RQ1, we conclude
that WARDER is effective in both cell clustering and defect
detection. It greatly improves the precision (by 15.5–87.3%),
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Fig. 6: Cell clustering results for CUSTODES and WARDER (precision changes)

Fig. 7: Worksheet “Detail for College of Education” (one
cluster marked in green by the ground truths)

and achieves the best F-measure (0.79) value among all
studied spreadsheet defect detection techniques.

2) RQ2: Correlation. We then study the correlation between
WARDER’s precision improvement over CUSTODES on cell
clustering and that on detect detection.

We use three symbols ↑, ↓, and → to represent precision
improved, precision reduced, and precision unchanged these
three cases, respectively. Then, we partition 140 worksheets
containing at least one defect in the ground truths out of
the total of 291 ones into three categories (in Table III):
(1) the “correlation supported” category indicates that when
WARDER, as compared to CUSTODES, has its precision
improved, reduced, unchanged on cell clustering, that on
defect detection behaves the same way; (2) the “correlation
unsupported” category indicates that when WARDER has its
precision improved on cell clustering, that on defect detection
keeps unchanged or is even reduced, or when having its preci-
sion reduced on cell clustering, that on defect detection keeps
unchanged or is even improved; (3) the “unknown” category
lists the remaining combinations, which neither support nor
unsupported the correlation. As a whole, we can observe that
the first category dominates (90%), and thus suggests that
WARDER’s focused precision improvement on cell clustering
indeed brings about its improvement on defect detection.

Fig. 8 shows more details about the precision compari-
son between WARDER and CUSTODES on cell clustering
(Fig. 8a) and defect detection (Fig. 8b). To be focused, we
removed those worksheets (116) having their precision un-
changed for both cell clustering and defect detection, and listed
only the remaining 24 ones. One can observe from the figure
detailed precision changes, as well as their change correlations
between cell clustering and defect detection in most cases.
One may notice one exception for worksheet “CO”, where
WARDER’s defect detection precision dropped from 100% to

TABLE III: Correlation study for WARDER against CU-
TODES on precision changes between cell clustering and
defect detection (↑: precision improved, ↓: precision reduced,
→: precision unchanged)

Category

Precision
change

type (cell
clustering)

Precision
change

type
(defect

detection)

#
work-
sheets

Sum of each
category

Correlation
supported

↑ ↑ 8
126 (90.0%)↓ ↓ 2

→ → 116

Correlation
unsupported

↑ → 5
↑ ↓ 2

9 (6.4%)↓ → 2
↓ ↑ 0

Unknown → ↑ 5 5 (3.6%)→ ↓ 0
Total - - 140 140 (100.0%)

zero, although it improved the cell clustering precision. We
further looked into this case. The ground truths suggest that
cells {B11, E11} (in green) and {C11, F11} (in orange) should
form two clusters (in Fig. 9), and cells C11 and F11 are both
defects (with red triangle marks). CUSTODES detected the
two defects accidentally by clustering the four cells together.
The is accident because the four cells actually do not share any
common computational semantic (the two green ones calculate
the largest value, while the two orange ones calculate the
second largest value). CUSTODES considered the two orange
cells as defects simply because they contain plain values only
(missing formula defects). One the other hand, WARDER
clustered {B11, E11} only together and thus did not detect
any defect in them. It missed the two orange cells because
they do not contain any formula and should not form a cluster
according to their definition. Without any additional evidence
(e.g., more cells together and some contain formulas that can
unify values in other cells), WARDER chose not to form such
clusters (otherwise, more false positives can result).

In summary, to answer research question RQ2, we conclude
that WARDER’s improved cell clustering over CUSTODES
contributes to its improved defect detection, and this corre-
lation is supported by 90.0% worksheets.
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orange by the ground truths)

3) RQ3: Individual impacts. Finally, we study the individual
impact of WARDER’s three validity refinements on its effec-
tiveness in detecting spreadsheet defects. WARDER was con-
figured with each refinement enabled only (named WARDER-
sc, WARDER-mc, WARDER-wc, as aforementioned), and
compared to the full-fledged WARDER (WARDER-full).

Table IV compares defect detection results for CUSTODES
and WARDER’s four configurations. We observe that: (1)
WARDER’s each validity refinement is useful, and individ-
ually improved the precision for defect detection by 4.9–7.6%
over CUSTODES, with a small sacrifice (1.9–2.3%) on the
recall rate, leading to an improvement on F-measure from 0.71
to 0.73–0.74; (2) combining all the three validity refinements
together (i.e., WARDER-full) achieved the highest precision
(87.8%) and F-measure (0.79), which are also echoed earlier
in Table I.

TABLE IV: Defect detection results for CUSTODES and
WARDER configured with different validity refinements

Technique Detected TP FP precisiond recalld F -measured
CUSTODES 2,380 1,539 841 64.7% 78.2% 0.71
WARDER-sc 2,083 1,506 577 72.3% 76.3% 0.74
WARDER-mc 2,164 1,507 657 69.6% 76.3% 0.73
WARDER-wc 2,071 1,498 573 72.3% 75.9% 0.74
WARDER-full 1,612 1,415 197 87.8% 71.9% 0.79

TABLE V: Defect detection results for the four spreadsheet
defect detection techniques on VEnron2

For all 6,258 worksheets For sampled 300 worksheets

Technique # reported
worksheets

# reported
defects

Time cost
(min) # defects # TP Precision

AmCheck 859 20,280 21 3,316 540 16.3%
CACheck 953 12,953 372 1,559 534 34.3%

CUSTODES 1,284 14,102 537 2,334 629 26.9%
WARDER 1,136 9,462 518 1,240 512 41.3%

In summary, to answer research question RQ3, we conclude
that WARDER’s three validity refinements can individually
contribute to its effectiveness on defect detection, and achieve
the best effectiveness when combined them together.

D. Case Study

Besides the preceding controlled experiments, we also eval-
uate our WARDER’s effectiveness in detecting spreadsheet
defects using a large-scale corpus VEnron2 [45]. VEnron2
contains 1,609 versioned groups, refined from original 79,983
real-life worksheets in the Enron corpus [21]. We chose the
latest spreadsheet file from each versioned group, i.e., totally
1,609 spreadsheets, which correspond to a total of 7,140
worksheets as the subjects of our case study. We fed these
worksheets to different spreadsheet defect detection techniques
to compare their effectiveness on practical spreadsheets. Con-
sidering that UCheck and Dimension reported too few defects
(less than 1%), we in the case study selected the other four
techniques, namely, AmCheck, CACheck, CUSTODES, and
WARDER. In order to facilitate our comparisons and make
them fair, we removed some worksheets for which at least
one technique failed to run normally (e.g., causing unexpected
crashes or exceptions, or exceeding our controlled time limit
of five minutes for handling each individual worksheet so as
to avoid being trapped into dead locks or unknown errors).
This treatment left us a total of 6,258 worksheets for our case
study.

We note that VEnron2 does not contain ground truths for
evaluating a spreadsheet defect detection technique’s effective-
ness (e.g., recall rate and F-measure). Therefore, we focus
mainly on the precision for the four techniques. Besides, due
to the large number of all worksheets, although we ran each
technique on all these worksheets (e.g., for measuring their
time costs), we had to use worksheet sampling and manual
inspection for measuring the precision, following AmCheck’s
and CUSTODES’s suggested evaluations. Among all the 6,258
worksheets, 1,525 worksheets were reported to contain defects
by at least one technique. Based on them, we randomly sam-
pled 20% (rounded to 300) worksheets from them for manual
inspection, which decided whether each reported defect is a
true one or not. Based on the inspection, Table V compares
the four techniques for their defect detection results.

From Table V (300 worksheets part), we observe that: (1)
among the four techniques, WARDER achieved the highest
defect detection precision (i.e., 41.3%), outperforming the
others by 7.0–25.0%, which echoes WARDER’s focus on im-
proving the precision against CUSTODES (41.3% vs. 26.9%);
(2) although WARDER reported a little less true positives



Fig. 10: Venn graph for illustrating the intersections of re-
ported true positives between four spreadsheet defect detection
techniques

(512), which was accompanied with much fewer false positives
(728), which are 297–2,048 fewer than those of the other
three techniques, and this feature can be quite useful since
all spreadsheet defects have to be manually verified later in
practice.

From Table V (6,258 worksheets part), we observe that,
similar to sampled 300 worksheets, WARDER reported fewest
defects (9,462), as compared to 20,280 for AmCheck, 12,953
for CACheck, and 14,102 for CUSTODES. Considering that
WARDER achieved the highest precision, its report quality is
expected to be high (e.g., in 1,240 defects WARDER detected
512 true positives, while in 3,316 (over 2.6 times) defects
AmCheck detected only 540 true positives (marginally more)).
Regarding the efficiency (time cost), AmCheck took the least
time (21 minutes only) for handling all the 6,258 worksheets,
while the other three techniques took much more time (351–
516 minutes more). This result suggests that AmCheck can be
suitable for quickly identifying potential defects for spread-
sheets, but since its detection quality is low (precision: 16.3%),
it is better accompanied with other techniques for validation
(e.g., for filtering out most false positives). Besides, we note
that WARDER was based on CUSTODES and improved its
cell clustering only. Therefore, WARDER also worked not
so efficiently (518 minutes), as CUSTODES did (537 min-
utes). Still, WARDER reduced irrelevant cells and unqualified
clusters, thus reducing unnecessary workload, and this effort
contributed to a reduction to the time cost of 19 minutes.

Besides the overall precision and time cost comparisons, we
also study the intersections of reported true positives between
the four spreadsheet detection techniques, as illustrated by
the Venn graph in Fig. 10. In the figure, the yellow ellipse
represents the true positives reported by AmCheck, green by
CACheck, pink by CUSTODES, and purple by WARDER.
Each sub-area represents a specific intersection of reported
true positives by two or more techniques. From the figure, we
observe that: (1) The pattern-based group (i.e., AmCheck and
CACheck) and learning-based (in particular, clustering-based)
group (i.e., CUSTODES and WARDER) clearly complement
each other. The former has 243 (9 + 216 + 18) unique defects
undetectable by the latter, and the latter has 270 (211 + 59)
undetectable by the former. This result suggests that both

groups of techniques are useful. (2) In the pattern-based group,
CACheck extends over AmCheck. Accordingly, they share
a large portion of detected defects (78.4%, or 472 out of
602). As a result, AmCheck has 68 unique defects only, and
CACheck has 62 ones. Still, CACheck is welcome, considering
that it significantly reduced false positives (from AmCheck’s
2776 to its 1025) in Table V. (3) In the learning-based group,
WARDER refines over CUSTODES. Accordingly, it reported
512 true positives, only a subset (81.4%) of those reported by
CUSTODES (629). Nevertheless, this result is accompanied
with WARDER’s focus on filtering out irrelevant cells and
unqualified clusters, and this effort also led to significantly
reduced false positives (from CUSTODES’s 1705 to its 728)
in Table V. (4) CACheck and WARDER, as the best represen-
tative in each group, still complement each other. They each
have 292 and 270 unique defects, respectively, undetectable by
the other. This result strongly suggests their complementary
usage to each other.

As a conclusion, WARDER is also satisfactory in detecting
defects for practical spreadsheets. It achieved the highest pre-
cision (41.3%), outperforming other techniques by 7.0–25.0%.
Its time cost is a bit high, but comparable to CACheck (at the
same magnitude), and less than its predecessor CUSTODES.
Regarding detected defects, all studied techniques have their
own strengths, and are suggested for complementary usage to
each other.

E. Threat Analyses and Discussions

One threat concerns the calculation of cell clustering metrics
(i.e., precisionc, recallc, and F -measurec). They are based
on the TP, FP, and FN notions calculated from CUSTODES’s
pair-wise similarity comparisons. We note that such com-
parisons count the numbers of cell pairs on whether they
belong to the same cluster or belong to two different clus-
ters. Such calculations are different from those measuring
detected defects. As a result, studying the correlation between
WARDER’s cell clustering and its defect detection could be
affected to some extent. Nevertheless, we still observed 90%
worksheets supporting our studied correlation. This suggests
that WARDER’s improved cell clustering indeed contributes
to its defect defection.

One may also notice that WARDER still has room for
improvement, considering that it failed to detect certain
spreadsheet defects, as we analyzed earlier. There are two
major reasons. First, WARDER has focused on identifying
irrelevant cells (for removal) and unqualified clusters (for
cancellation). It does not retrieve back those relevant cells that
have already been missed by CUSTODES. Therefore, both
WARDER and CUSTODES could fail to detect spreadsheet
defects related to such missed cells. Second, even if all
relevant cells can be correctly clustered, CUSTODES itself
can still fail to detect certain defects due to its limited scope
in anomaly detection. Since WARDER focuses on improving
cell clustering only, it does not touch the anomaly detection
part. As a result, both techniques could fail to detect such
spreadsheet defects. Nevertheless, we observed in experiments



that WARDER already outperformed CUSTODES largely.
This suggests that WARDER has focused on a dominating
factor for the improvement. Still, the above analyses point out
new ways for further improvement.

We note that we attempted but did not manage to compare
our WARDER to the other two learning-based techniques,
Melford [42] and ExceLint [8] in our experiments and case
study. For the former, we did not find its tool available. For
the latter, we did find its tool available but we encountered
problems in the evaluation. First, ExceLint’s scope is very
different from those of the other six studied spreadsheet defect
detection techniques, in that it focuses only on detecting
part of inconsistent formula defects that have been caused
by wrong references. Second, ExceLint considers missing
formula defects not so important since they may not trigger
errors immediately. However, all the other techniques consider
such defects harmful and detect them, since such defects can
trigger unexpected errors when concerned spreadsheets un-
dergo future maintenance. In fact, missing formula defects are
common in practice spreadsheets (e.g., 64–78% in VEnron2 by
different techniques). Therefore, directly comparing WARDER
with ExceLint can be unfair and would seriously underesti-
mate ExceLint’s effectiveness. Besides, we also encountered
problem when running ExceLint as it lacked a specifically-
annotated ground truth. Therefore, we leave its comparison to
future work.

V. RELATED WORK

In this section, we present and discuss related work in
recent years. We organize the related work along four lines,
namely, spreadsheet quality issues, spreadsheet defect de-
tection, spreadsheet defect fixing and prevention, and other
spreadsheet-related research.

Spreadsheet quality issues. Spreadsheet quality issues
are common. They can contain various defects [33], [35],
[37], [38], and these defects cause catastrophic losses to
human lives [1], [34], [39]. Galletta et.al [17] conducted
an empirical study on spreadsheets, and reported that even
spreadsheet experts cannot significantly outperform novices
in identifying spreadsheet defects. This result suggests that
identifying spreadsheet defects can be a non-trivial research
problem. Nixon and O’Hara [32] reported a positive assistance
by supporting auditing in spreadsheets. Later, Anderson [6]
confirmed the usefulness of such assistance, but also raised
the concern for numerous missed spreadsheet defects. To better
understand spreadsheet relations and maintain the spreadsheet
quality, Mittermeir et al. [12], [31] proposed three types of
“logical areas” for clustering those formula cells that sat-
isfy three forms of equivalences, namely, copy, logical, and
structural equivalences, respectively. Such clustering can help
spreadsheet users better understand conceptual models behind
spreadsheets, and avoid or inspect defective cells more easily.

Spreadsheet defect detection. There is one line of
work particularly focused on detecting spreadsheet defects.
UCheck [3], [4] and Dimension [10] are probably represen-
tative pioneers on this aspect. Based on unit or dimensional

information derived from spreadsheet tables, they verify the
correctness of formula calculations by checking whether there
exists any illegal combination of incompatible units. Then,
Hermans et al. implemented portable tools to detect and
visualize several types of spreadsheet defects by focusing on
inter-worksheet smells [22], data clones [25], and formula
smells [23], [24]. They are the first to adapt the concept
of code smell in conventional programs to the spreadsheet
domain. After that, Abreu et al. [5] used a generic spectrum-
based strategy to localize defects and improved the local-
ization precision and recall for spreadsheet defects. Hofer et
al. [26], [27] further studied the impact of different similarity
coefficients on the accuracy of spectrum-based spreadsheet
defect localization. Meanwhile, AmCheck [14] and its follow-
up extension CACheck [15] were proposed to support effective
defect detection by focusing on spreadsheet smells caused by
ambiguous computations based on the notion of cell array.
Similarly, Xu et al. [46] proposed to detect defective empty
cells in spreadsheets by analyzing the context of empty cells.
Cheung et al. [11] proposed CUSTODES by adaptive learning,
based on formula-related cell clustering and anomaly-oriented
defect detection. CUSTODES also provided a spreadsheet
benchmark to facilitate follow-up research evaluation. Two
examples built on this benchmark are Melford [42] and
ExceLint [8]. The former used a network-based technique to
detect missing formula defects, while the latter used statistical
techniques to measure the likelihood of a spreadsheet defect
based on the entropy and layout of its associated references
for detecting inconsistent formula (or reference) defects. Sim-
ilar inconsistency issues can also raise concerns for general
software in many fields, e.g., context inconsistency detection
for adaptive applications [44], inconsistency management for
software engineering [43], etc. Our WARDER in this paper is
closely related to this line of work, and it makes attempts
to improve spreadsheet defect detection by refining CUS-
TODES’s cell clustering based on cell-level and cluster-level
validity properties.

Spreadsheet defect fixing and prevention. Spreadsheet
defect detection techniques can also come with fixing sug-
gestions. For example, besides detecting spreadsheet smells,
CACheck also proposed to automatically repair its detected
smells by synthesizing and recovering intended computational
semantics in terms of formulas for concerned cells. Some work
goes one step further by focusing on preventing spreadsheet
defects from occurring in advance. For example, Luckey et
al. [30] targeted on supporting correct spreadsheet evolution
(i.e., without introducing defects into spreadsheets). Cunha et
al. [13] aimed at helping build a more reliable spreadsheet
programming environment. Besides, some pieces of work fo-
cus on achieving better spreadsheet maintenance practice. For
example, Harutyunyan et al. [20] proposed to automatically
identifying differences between spreadsheet versions so that
maintainance can be more reliably conducted. Badame and
Dig [7] proposed to obtain different measures on spreadsheet
formulas, so that these formulas can be better refactored
for maintenance. Our WARDER work may also consider



enhancing itself with spreadsheet defect fixing or prevention
suggestions in future.

Other spreadsheet-related researches. There are also
some pieces of work focused on similar topic research.
For example, Zhang et al. [47] proposed an automated ap-
proach to improving the expression for nested-IF formulas
in spreadsheets by removing logic redundancy, so that high-
level formula semantics can be more easily identified for
better understanding. Samuel et al. [28] modeled common
spreadsheet formulas and relations through predicates and
expressions, and used a two-stage approach to generating and
testing spreadsheets by constraint solving, so that constraints
across spreadsheet cells can be discovered. Finally, program
synthesis techniques are becoming increasingly popular in the
spreadsheet domain, and many pieces of research have been
proposed for solving spreadsheet-specific problems such as
table transformation [19], string synthesis [18], and number
transformation [41] by a programming-by-example approach.
We have not considered program synthesis techniques in our
WARDER work, but may try along this direction in future
(as AmCheck and CACheck, which have tried and received
promising results).

VI. CONCLUSION

In this paper, we study the problem of spreadsheet defect
detection. We present WARDER for refining CUSTODES’s
cell clustering in order to improve its effectiveness in de-
tecting spreadsheet defects. WARDER is based on our key
observations that rely on our identified three validity properties
to prevent fragile clusters from being formed, which can in-
volve irrelevant cells and unqualified clusters. These properties
concern different levels of cluster validities, namely, single-
cell, multi-cell, and whole-cluster validities, whose uses can
effectively contribute to improved precision of spreadsheet de-
fect detection. Our experimental evaluation with a benchmark
and case study with a large-scale spreadsheet corpus have
confirmed WARDER’s effectiveness in detecting spreadsheet
defects, in particular on the detection precision.

WARDER still has room for improvement as we analyzed
earlier. For example, its validity framework can be extended
with more validity properties. Besides, currently WARDER
focuses only on filtering out irrelevant cells, and it can be
extended for retrieving back missed relevant cells. Also, it can
be extended for improving the anomaly detection part. We are
working along these lines.
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