GEAS: Generic Adaptive Scheduling for
High-efficiency Context Inconsistency Detection

Bingying Guo'*, Huiyan Wang'*, Chang Xu*'¥, Jian Luf*
fState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
IDepartment of Computer Science and Technology, Nanjing University, Nanjing, China
bingying_nju@outlook.com, cocowhy1013@gmail.com, {changxu, 1j} @nju.edu.cn

Abstract—Context-aware applications adapt their behavior
based on collected contexts. However, contexts can be inac-
curate due to sensing noise, which might cause applications
to misbehave. One promising approach is to check contexts
against consistency constraints at runtime, so as to detect context
inconsistencies for applications and resolve them in time. The
checking is typically immediate upon each collected context
change. Such a scheduling strategy is intuitive for avoiding
missing context inconsistencies in the detection, but may cause
low-efficiency problems for heavy-workload checking scenarios,
even if equipped with existing incremental or parallel constraint
checking techniques. One may choose to check contexts in a
batch way to increase the efficiency by reducing the number of
constraint checking. However, this can easily cause missed context
inconsistencies, denying the purpose of inconsistency detection.
In this paper, we propose a novel scheduling strategy GEAS of
two nice properties: (1) adaptively tuning the batch window to
avoid missing any context inconsistency; (2) generic to checking
techniques with no or little adjustment. We experimentally
evaluated GEAS against the immediate strategy with existing
constraint checking techniques. The experimental results show
that GEAS achieved 143-645% efficiency improvement without
missing any context inconsistency, while alternatives caused 39.2—
65.3% loss of detected context inconsistencies.

Index Terms—Context inconsistency, scheduling strategy, sus-
picious pair

I. INTRODUCTION

Consistency management for software artifacts (e.g., XML
documents [1], UML models [2], data structures [3], ...) has
been extensively studied for their maintenance during software
development and evolution. Contexts, key software artifacts
for supporting smart adaptation, play an important role in
context-aware applications. Contexts also require consistency
management to avoid applications to behave abnormally due
to sensing noise, leading to corrupted contexts [4]. Typical
contexts, like user location, room temperature and GPS data,
are subject to frequent changes, and thus call for efficient and
effective consistency management [5]-[7]. This is typically
done by specifying necessary properties that must hold for
contexts as consistency constraints [1], [8] and checking
contexts against the constraints to see whether any violation
(named context inconsistency [6], [9]) occurs. Detected context
inconsistencies can then be resolved by context fixing to help
applications to behave normally and smartly.

*Corresponding author.

pjentersroomx py entersroomy pg3 entersroomy pg entersroomx po leaves room x

. ppentersroom x | pq leavesroom x | pj entersroomy | p3 leavesroomy
inaccurate inaccurate

inaccurate

chgy chgy chgy chgy chgs chgg chgy chgg chgg Time

tmmeaschea d L 4 L b L L L 1
CCR: % 4 tincq } 4 i tincy} {incp, incz} {incy} 4
{incq, {incq, {incq,
IDR: 4 8 tincgj {inc} fincg} fincq, i“CZ}incz. incz }incy, incz }incy, incg}
BatchSched (win.size= z>4l Jl @ JL
CCR: it 8 {incy} tincz }
IDR: 8 i {incy } {incy }

Fig. 1: Illustrative scenario — problem with BatchSched (CCR:
constraint checking result; IDR: inconsistency detection result).

Typically, checking contexts against consistency constraints
is scheduled immediately upon each collected context change
(i.e., any change relating to a specific context) to detect poten-
tial inconsistencies. However, it can cause low-efficiency prob-
lems when it comes to heavy-workload checking scenarios,
even if equipped with incremental [6] or parallel [7] constraint
checking techniques. Unfortunately, heavy-workload scenarios
are common in practice, since real-life context changes usually
come in a stream and very frequently. As a result, immediate
scheduling could be impractical for application under many
circumstances. For ease of presentation, we name such check-
ing strategy upon each collected context change Immediate
Scheduling (ImmedSched).

In order to improve the efficiency of context inconsistency
detection, one may choose to check contexts in a batch way by
reducing the number of constraint checking, which we name
Batch Scheduling (BatchSched). BatchSched checks contexts
upon multiple collected context changes as a group. It clearly
works faster than ImmedSched, since it merges the checking
for multiple context changes into one and some redundant
overhead can thus be saved. However, such a scheduling strat-
egy can easily cause undesirable consequences like missing
context inconsistencies, causing applications still to behave
abnormally.

To see it, we consider an application scenario as illustrated
in Fig. 1. The application’s contexts specify the persons
currently staying in each room (rooms x and y). Suppose
that there are nine context changes collected in a sequence,
and that changes chgs, chgs and chg; are inaccurate (e.g.,

wrongly collected due to sensing noise or collected in wrong
time due to sensing asynchrony [10], [11]). We consider a
consistency constraint for this scenario: no one can stay in
rooms x and y at the same time. Then we observe that context
changes chgs, chgs and chg; cause three context inconsis-
tencies (inc.), respectively, with earlier context changes. In
the figure, CCR represents constraint checking result, i.e.,
inconsistencies for the current contexts with all changes so
far applied, and IDR represents inconsistency detection result,
i.e., all inconsistencies ever detected so far. If one applies
ImmedSched, constraint checking would be scheduled upon
each context change, as indicated by blue arrows in Fig. 1.
Then we observe that ImmedSched perfectly detects all context
inconsistencies (inci, incg, incs), although it is rather time-
consuming.

However, if one applies BatchSched and checks these con-
text changes in a batch of size two (i.e., window size is two),
constraint checking would be scheduled every two changes
(i.e., upon chgs, chgy, ..., chgg), as indicated by green
arrows in Fig. 1. Although CCR still reports the same results
(relying on current contexts only), IDR can have quite different
results (accumulating all inconsistencies ever detected). For
example, since constraint checking is not scheduled upon
context changes chgs and chgz, their incurred inconsistencies
(incq, inc3) are thus missed. As a result, the final IDR for
BatchSched contains inco only, accounting for a missing
rate of 66.7%, seriously impairing the purpose of context
inconsistency detection.

Such inconsistency-missing consequences are undesirable
and can still cause context-aware applications to misbehave,
since their adaptive behavior relies on contexts, which are
still inconsistent. Besides, even if equipped with state-of-the-
art inconsistency resolution [4], [12] or exception handling
services [13], [14], the applications can seldom survive since
inconsistencies have been already missed.

Therefore, we face a dilemma situation: (1) ImmedSched
does not miss context inconsistencies, but it is too slow; (2)
BatchSched works faster, but it misses context inconsistencies
in the detection. To address this dilemma problem, we in this
paper propose a novel scheduling strategy GEneric Adaptive
Scheduling (GEAS). GEAS can both improve the efficiency
of context inconsistency detection by batch-styled constraint
checking and avoid missing any context inconsistency by
adaptive tuning of the batch window size. GEAS owns two
nice properties: (1) the adaptive tuning of the window size is
fully automated; (2) the scheduling is generic to many existing
constraint checking techniques (e.g., ECC [1], PCC [6], Con-
C [7] and GAIN [5]) with no or little adjustment. The key
insight behind GEAS is that when checking context changes
in a batch, only certain combinations of context changes
in a batch can cause context inconsistencies missed in the
detection. One can derive such combinations from consistency
constraints in advance (named suspicious pairs). One then uses
such suspicious pairs at runtime to judge whether any context
change in a stream can potentially cause context inconsisten-
cies missed before checking the change in a batch way. This

automated judgment helps adaptively tune the batch window
size, such that the efficiency of inconsistency detection can be
smartly improved without compromising its effectiveness, i.e.,
missing any inconsistency.

We conducted experiments to evaluate GEAS’ efficiency
and effectiveness. Our experimental results report that GEAS
achieved 143-645% efficiency improvement when equipped
with various constraint checking techniques, as compared with
ImmedSched and BatchSched. The results also report that
GEAS completely avoided missing any context inconsistency
in the detection, while alternatives caused 39.2-65.3% loss of
context inconsistencies in the detection.

In summary, we make the following contributions in this
paper:

¢ We propose a novel scheduling strategy GEAS for context
inconsistency detection. GEAS can adaptively tune its
batch window to both improve the detection efficiency
and avoid missing context inconsistencies.

o We elaborate on GEAS’ generality and explain how to
apply it to four state-of-the-art context constraint check-
ing techniques with no or little adjustment.

e We compare GEAS’ efficiency and effectiveness with
existing work and evaluate its practical performance in
real-world scenarios.

The remainder of this paper is organized as follows. Sec-
tion II introduces our problem background and formulation.
Section III elaborates on our GEAS approach. Section IV
explains the application of our GEAS to existing context
constraint checking techniques. Section V evaluates GEAS
and compares its efficiency and effectiveness to existing work.
Finally, Section VI discusses the related work in recent years,
and Section VII concludes this paper.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the background to context
constraint checking with some concepts defined, and then
present our problem formulation.

A. Concepts

A context refers to a piece of environmental or logical
information interesting to a context-aware application [10].
We model a context as a finite set of specific elements, and
each element represents a relevant part of this context. Take
a context-aware application App_room as an example, which
can automatically turn on a room’s air conditioning system if
the room is occupied with many people. We model all people
in room x at the moment by a context R, = {p1, p2, ...}. Ra
represents the set of all people currently in room z and p;
identifies each individual person.

A context change denotes any possible change relating to
a specific context, and it is represented by a tuple <type,
context, paral, para2, ...>. There are three types of context
changes, namely, addition change (adding a new element into a
context), deletion change (deleting an existing element from a
context) and update change (updating an element’s value). For

ease of presentation, we use “+”, “—"" and “#” to represent the

three types, respectively. Suppose that a context for application
App_room is R, = {p1, p2} (i.e., only two persons p; and
po are currently in room x). An addition change (e.g., ps3
enters room z) can be represented as <+, R,, p3>, and a
deletion change (e.g., p2 leaves room z) as <—, R,, p2>. An
update change (e.g., p3 updates his personal information) can
be represented as <#, R, p3, p5 >.

With respect to each application, we define a context pool
as the collection of all contexts interesting to this application.
For application App_room, which considers only rooms x
and y, its context pool is P = {R,, R,}. Many existing
context-aware middleware infrastructures or frameworks [15]-
[17] support such pool-alike data structures for applications.
Maintaining such a context pool helps applications to access
their interesting contexts when necessary and apply collected
context changes to corresponding contexts.

Contexts in a context pool can be inaccurate, incomplete
or even conflicting with each other due to sensing noise or
reasoning imprecision [4]. Since there is no precise oracle to
generally validate contexts’ correctness directly [10], one can
check contexts against consistency constraints as mentioned
earlier, so as to detect context inconsistencies for applications.
Consistency constraints are typically expressed using a first-
order logic (FOL) based constraint language [6] as follows:

J=WweC (f)|Fvel (f)

(f) and (f) [(f) or (f) | (f) implies (f) | not (f) |
bfunc(vy, va, ..., vy) | True | False.

C represents a specific context in an application’s context
pool and v; is a variable, which takes any element in a context
as its value. Terminal bfunc is a user-defined function that
takes elements from a context as input and returns a boolean
value (True or False). It serves as a predicate on values of
contexts. For application App_room, its consistency constraint
Sloc “NO one can stay in rooms x and y at the same time” can
be expressed as:

Sloc: Y1 € Ry (not (Fvg € Ry (equal(vi, v2)))).

Consistency constraints are usually derived from general
physical laws or application-specific requirements [1], [6], [8].

B. Context Constraint Checking Techniques

Context constraint checking techniques take contexts in a
context pool and given consistency constraints as input, and
return the result on whether any constraint has been violated
and how the violation has occurred (i.e., whether and how
questions). If there is no violation, the whether and how
questions obtain a (False, {}) result. Otherwise, the question
obtains a (True, {incy, incs, ... }) result. Each inconsistency
inc; is represented by a link [1], [6], connecting specific
elements and their corresponding variables, explaining why
a concerned constraint has been violated. Take an existing
constraint checking technique PCC [6] as an example, and
apply it to the scenario in Fig. 1. For the aforementioned
constraint Sj,., PCC would report inc; upon context change
chgs. Inconsistency incy is represented by a link {(v1, p1),
(v2, p1)}, indicating that “p; in R,” and “p; in R,” together
cause the violation to consistency constraint Sj,.. Similarly,

upon context change chgr, PCC would report {(v1, p2), (va,
p2)} and {(v1, p3), (va, p3)}, i.e., ince and incg, as shown in
Fig. 1.

To facilitate subsequent discussions, we define constraint
checking result (CCR) and inconsistency detection result
(IDR). As mentioned earlier, CCR represents inconsistencies
for the current contexts with all changes so far applied, and
IDR represents all inconsistencies ever detected so far. Given a
consistency constraint s and a context pool P, we use CCR(s,
P) to denote the constraint checking result when checking
contexts in P against constraint s. Take the scenario in Fig.
1 as an example. Let the context pool after applying change
chg; be P;. Then CCR(S}e, Ps) = {inc, } and CCR(S;,c, Pr)
= {incs, inc3}. We further explain IDR later.

In this paper, we consider four representative context con-
straint checking techniques, namely, ECC [1], PCC [6], Con-
C [7] and GAIN [5]. ECC is the baseline, which checks con-
texts against consistency constraints non-incrementally. PCC
works incrementally by reusing previous checking results.
Con-C and GAIN check contexts in parallel by multiple CPU
threads and GPU threads, respectively. Although the four
techniques have different levels of efficiency, they follow the
same constraint checking process and return the same checking
result.

C. Problem Formulation

To detect context inconsistencies for applications, constraint
checking techniques are scheduled repeatedly according to a
specific scheduling strategy, e.g., aforementioned ImmedSched
and BatchSched. Here, we use IDR to represent all context
inconsistencies ever detected so far (even if they may be gone
or resolved later).

Suppose that the whole context inconsistency detection
starts at time point ¢y and each context change is collected
at a distinct time point (i.e., chg; is collected at time point ¢;).
Let the updated context pool at time point ¢; after applying
chg; be P; and the consistency constraint under consideration
be s.

ImmedSched applies constraint checking upon each context
change (i.e., checking happens at time points 1, 2, ...), and its
IDR at time point ¢, is the union of all previous CCR values
until ¢, (i.e., IDR(m) = U2 CCR(s, F;)). Take the scenario
in Fig. 1 as an example. Its final IDR by ImmedSched is {inc;,
incy, inc3} at time point tg (i.e., IDR(9) = UY_,CCR(s, P)).

However, if one applies BatchSched to schedule constraint
checking upon every k context changes (i.e, batch window
size = k), its IDR at time point ,, is IDR(m) = Uﬁ/lkCCR(s,
P;.r)) (m > 2). For example, if one sets the window size to
be two (i.e., k = 2) as shown in Fig. 1, BatchSched’s IDR
at time point tg is IDR(9) = IDR(8) = U{_;CCR(s, Pj.2)) =
{inca}.

ImmedSched’s IDR is always complete since it schedules
constraint checking upon every context change, thus capturing
each potential inconsistency. However, BatchSched’s IDR may
miss context inconsistencies as illustrated by the preceding
example. Suppose that there are two context changes chg,

Deriving suspicious pairs Suspicious II
j_ from constraints (I11.B) :> pairs
=

Consistenc @

constraints . .
<:I { Matching changes against }

suspicious pairs (I11.C)
—
Constraintchecking | | Generic adaptive scheduling (GEAS)
techniques (IV)
Detected context
inconsistencies

Fig. 2: Overview of our GEAS approach.

Scheduling constraint
checking (I11.D)

Scheduling decisions

Stream of
context changes

and chgy, (a < b) in one batch and the CCR value before
checking this batch of changes is CCR(s, Fp). After studying
relations between CCR and IDR values, we observe that if
the corresponding CCR values upon changes chg, and chgy
have: CCR(s, P,) — CCR(s, Py) # 0 and CCR(s, P,) —
CCR(s, Py) # 0, then BatchSched’s IDR upon this batch of
changes could differ from that of ImmedSched. This is because
checking upon change chg, would detect new inconsistencies
as compared to the situation before checking any change in
this batch, and checking upon changes chg, and chg, to-
gether could cause such inconsistencies undetectable. Note that
such undetectable inconsistencies due to checking in a batch
(i.e., chg, and chg, together) may not necessarily be those
new inconsistencies due to checking chg, individually (i.e.,
without chg, together), but such possibility does exist. For
example, BatchSched in Fig. 1 checks upon change chgy (i.e.,
chgs and chg, in one batch) and thus misses inconsistency
incy, which can otherwise be detected by ImmedSched to
check upon chgs and chgy in turn, i.e., IDRpgatehSched(4) #
IDRIm7rLedSched(4)-

In this paper, we propose our GEAT approach to avoiding
leaving the preceding problematic change pairs (named suspi-
cious pairs) in one batch, so as to prevent context inconsis-
tencies from being missed in the detection, i.e., IDRggas/(4)
= IDRymmedSched(t) always holds.

III. GENERIC ADAPTIVE SCHEDULING

In this section, we elaborate on our GEAS approach, which
is able to adaptively tune the batch window to avoid missing
any inconsistency in IDR.

A. Approach Overview

Our GEAS approach aims to identify such context change
pairs, which can possibly cause context inconsistencies missed
in the detection when they are checked in one batch, and to
isolate them into different batches by actively tuning the batch
window size.

Consider our illustrated example in Fig. 1. GEAS would
identify in advance that some context change pairs (e.g., “77
enters room x” and “7? leaves room x”, or “?? enters room y”’
and “77? leaves room 3”) are suspicious and thus should not be
scheduled in one batch. It then schedules constraint checking

upon context changes chgs and chgy only, and obtains IDR(3)
= {inc; } and IDR(7) = {incy, incy, incg}. By doing so, GEAS
tunes its batch window size adaptively (size = 3 and 4 in
turn) and its final IDR equals to IDRmedschedd = {incy,
inco, incs }. Besides, GEAS schedules constraint checking only
twice, thus improving the efficiency significantly. Compared
with BatchSched, GEAS conducts constraint checking even
less but obtains always complete IDR values, while Batch-
Sched (window size = 2) results in its final IDR value of
66.7% missed rate.

We illustrate our GEAS approach in Fig. 2. GEAS consists
of three phases. The first phase deviates suspicious pairs
from given consistency constraints statically. The second phase
matches collected context changes against our deviated suspi-
cious pairs dynamically to judge whether scheduling a specific
context change in the current batch could possibly cause
context inconsistencies missed in the detection (i.e., making
IDRGEAs(2) = IDRmmedSched(i) no longer hold). Finally,
the third phase schedules context changes smartly by tuning
the batch window size according to our matching results. In
the following, we introduce the three phases in turn (IILB,
[I.C and III.D).

B. Deriving Suspicious Fairs from Consistency Constraints

GEAS’ first phase derives suspicious pairs from given
consistency constraints. To do so, we first introduce the impact
that can be caused by a context change.

If a context change can possibly cause a consistency con-
straint to change its true value from True to False, such
changes can potentially cause new context inconsistencies.
Then, we say that such context changes have the inc+ impact.
On the contrary, if a context change can possibly cause a
consistency constraint to change its true value from False
to True, such changes can potentially cause existing context
inconsistencies undetectable if checked with earlier changes.
Similarly, we say that such context changes have the inc—
impact. In subsequent discussions, we use a short form of
<type, context> to represent a context change, as other fields
are unnecessary for our analysis. We define some concepts
below.

Definition 1 (inc+ change): If a context change has the
inc+ impact only, it is classified as an inc+ change, indicating
that this context change can potentially cause new inconsis-
tencies.

Definition 2 (inc— change): If a context change has the
inc— impact only, it is classified as an inc— change, indi-
cating that this context change can potentially cause existing
inconsistencies undetectable.

Definition 3 (inc? change): If a context change has both the
inc+ impact and inc— impact, it is classified as an inc? change,
indicating that this context change can potentially cause new
inconsistencies, existing inconsistencies undetectable, or both.

We then discuss how to derive inc+/inc—/inc? changes for
given consistency constraints. Consider consistency constraint
s given by a universal formula Vo € C' (f) and three context
changes <+, C>, <—, C'> and <#, C>. For constraint s,

TABLE I: Deduction rules for classifying inc+, inc— and inc? changes.

Formula type

Deduction rules

Set of inc+ changes

Set of inc— changes ‘ Set of inc? changes

Yo e C (f) Setines (f) U {<+, C>} | Setine (f) U {<—, C>} Setiner(f) U {<#, C>}
JveC (f) Setiner(f) U {<— C>} | Setmer (f) U {<+, C>} | Setimer(f) U {<#, C>}
(f1) and (f2) Setinet(f1) U Setinet(f2) | Setine—(f1) U Setine—(f2) | Setiner(f1) U Setincr(f2)
(f1) or (f2) Setine+(f1) U Setinct(f2) | Setine—(f1) U Setine—(f2) | Setiner(f1) U Setiner(f2)
(f1) implies (f2) Setine—(f1) U Setinct(f2) | Setinct(f1) U Setinc—(f2) | Setincr(f1) U Setince(f2)
not (f) Setinc—(f) Setinct(f) Setince(f)
bfunc(vy,...) 0 [} 1}

<+, C> is an inc+ change. This is because adding a new
element into C' can possibly cause the universal formula from
satisfied to violated (i.e., truth value changes from True to
False), while making the truth value change from False to
True is impossible. Similarly, <—, C> is an inc— change,
because deleting an existing element from C' can possibly
cause the universal formula from violated to satisfied (i.e.,
truth value changes from False to True), while making the
truth value change from True to False is impossible. <#, C'>
is an inc? change, because <#, C'> can change any element’s
value arbitrarily and thus cause an unpredictable impact.

Following this principle, we present our deduction rules in
Table I, to derive three sets of classified context changes for a
given consistency constraint s. The three sets are Set;,q4(s),
Setine—(s) and Setiner(s).

For example, consider the aforementioned Sj,. constraint
in Section ILA. Set;nc+(Sio.) can be derived as follows:
Setinet (Sioc) = Setiner (N0t (3ve € Ry, (equal(vy, v2))))
U {<+,R;>} = Setine—(Fva € Ry (equal(vi, v2))) U
{<+,R;>} = Setinc—(equal(vi, v2)) U {<+,R,>} U
{<+,R;>} =0 U{<+, Ry>} U{<+,R;>} = {<+,R;>,
<+,R,>}.

Similarly, its two other sets of inc— and inc? changes are
as follows: Setinc—(Sioc) = {< — Ry >, < —, Ry >} and
Setine?(Sioc) = {< #, Ry >, < #, Ry >}

Based on the three derived sets of inc+,
changes, we define suspicious pairs.

inc— and inc?

Definition 4 (Suspicious pair): A suspicious pair is a
combination of two context changes. The first change has the
inc+ impact and the second has the inc— impact.

According to the definition, a suspicious pair can be of four
forms, namely, (inc+, inc—), (inc+, inc?), (inc?, inc—) and
(inc?, inc?).

Then, all suspicious pairs for this constraint Sj,. are as
follows (superscript denotes specific type of change, for il-
lustration only):

(<+, Ry/R,>"t, <—, R,/R,>"°"),

(<+, Ry/R,>Met, <#, R,/R,>™),

(<#, Ry/Ry>"<", <—, Ry/R,>""),

(<%‘é7 Rw/Ry>inc?’ <#’ Rz/Ry>inC?).

By doing so, suspicious pairs can be derived for a given
consistency constraint s automatically, and each suspicious
pair contains two context changes in order, e.g., chg, and
chgy. The first changes chg, can possibly cause new incon-
sistencies when calculating a CCR value, and the second one
chgy can possibly cause existing inconsistencies undetectable.
Therefore, changes chg, and chg;, can together cause CCR(s,
P,) — CCR(s, Py) # 0 and CCR(s, P,) — CCR(s, P,) # 0.
Here, we use P, to represent the context pool before applying
changes chg, and chg,. As a result, the new inconsistencies in
CCR(s, P,) — CCR(s, P), detectable by scheduling constraint
checking upon chg,, can possibly become undetectable if
one schedules changes chg, and chg, in one batch (i.e., not
scheduling constraint checking upon chg,).

C. Matching Context Changes Against Suspicious Pairs

GEAS’ second phase matches collected context changes
against derived suspicious pairs, so as to judge whether
scheduling the next change in the current batch could possibly
cause inconsistencies missed in the detection. In the matching,
we examine each pair formed by an existing context change
in the current batch and the next context change.

Take the context changes in Fig. 1 as an example. Upon
change chgy, GEAS examines three pairs (<chg;, chgs>,
<chga, chgs>, <chgs, chgs>) in turn, to judge whether
any change pair matches any suspicious pair derived for the
consistency constraint under consideration. Since chgs is an
inc+ change and chg, is an inc— change, their pair <chgs,
chgs> matches one suspicious pair (<+, R,>, <—, R;>).
In other words, context changes chgs and chg, together
can cause inconsistencies undetectable if scheduled in one
batch for constraint checking. In fact, we indeed observe that
scheduling chgs and chg, in one batch causes inconsistency
inc; missed in an IDR calculation as shown in Fig. 1. Its
underlying reason is: CCR(s, P3) — CCR(s, P) # () and
CCR(s, P3) — CCR(s, Py) # 0, as we analyzed earlier.

We present the matching algorithm as Algorithm 1. Given
any new context change, it is attached to each context change
in the current batch in turn (Line 1) to examine whether their
combination matches any suspicious pair derived in advance
(Line 3). In order to improve the efficiency, the algorithm

Algorithm 1 Matching changes against suspicious pairs
Input: S (all suspicious pairs), chg (a context change),
setOfChgs (context changes in the current batch)

Qutput: result (whether a suspicious pair is matched)
1: for any change c in setOfChgs do
2: if c.category == “inc+” or “inc?” then

3 if S contains (c, chg) then
4: result := TRUE;

5: break;

6 end if

7 end if

8: end for

9: result .= FALSE;
10: return result

Algorithm 2 Scheduling constraint checking

Input: QO (queue maintained), S (all suspicious pairs), chg (a context
change)

1: let setO fChgs contain all changes in the current batch Q;

2: if suspPairMatch(S, chg, setO fChgs) returns TRUE then
3: Check(setOfChgs); // Schedule constraint checking

4: Q.clear(); // Make the current batch empty

5: end if

6: decide change chg’s category, e.g., inc+, inc— or inc?;

7: Q.add(chg);

8: return

attaches the new context change to inc+ and inc? changes
only (Line 2), since the first context change in a suspicious
pair must be an inc+ change or an inc? change according
to the definition. To do so, each change maintains a category
field to indicate its specific type of change, e.g., inc+, inc—
or inc?.

D. Scheduling Constraint Checking

GEAS’ final phase schedules constraint checking adaptively
according to its matching results, so as to avoid missing
any context inconsistency in the detection. We present the
scheduling algorithm as Algorithm 2.

The algorithm maintains the current batch queue @, and any
newly collected context change may be added into this queue
in order if necessary. Upon any new context change, a new
pair formed by an existing change in () and this new change
is examined by Algorithm 1 (Line 2, by suspPairMatch), to
find out whether scheduling this change in the current batch
can possibly cause any inconsistency missed in the detection.
If yes, the algorithm schedules constraint checking (Line 3)
immediately on the current batch of context changes, and then
clears them (Line 4) after that. Then, no matter constraint
checking has been scheduled or not, the new context change
obtains its category value (e.g., set as “inc+" if it is an inc+
change) and is added into @) (Line 7).

Such a matching and scheduling process continues until all
context changes are processed. In this way, GEAS automati-
cally tunes its batch window size according to matching results
and schedules constraint checking only when necessary, thus
both improving the efficiency and avoiding missing context
inconsistencies in the detection.

IV. EXISTING CONTEXT CONSTRAINT CHECKING
TECHNIQUES

GEAS is generic in the sense that it can easily work with
existing context constraint checking techniques (e.g., ECC [1],
PCC [6], Con-C [7] and GAIN [5]) with no or little adjustment.

We partition existing constraint checking techniques into
two categories: non-cache-based and cache-based. A constraint
checking technique is non-cache-based if it supports process-
ing multiple context changes together (not relying on cached
previous checking results), and cache-based if it does not
support (e.g., can only process context changes one by one,
due to the dependency on cached previous checking results).
Existing context constraint checking techniques such as ECC,
Con-C and GAIN belong to the non-cache-based category as
they work non-incrementally, and PCC belongs to the cache-
based category as it works incrementally.

For non-cache-based context constraint checking tech-
niques, GEAS is directly applicable, since such techniques are
already ready for processing multiple context changes in one
batch scheduled by GEAS. In fact, we successfully applied
GEAS to ECC, Con-C and GAIN without any adjustment to
their checking semantics.

For a cache-based context constraint checking technique like
PCC, one needs to make a little adjustment to its checking
semantics, since such technique was originally designed for
processing one context change a time (that is why it is
incremental). For PCC, we modified its checking semantics a
little bit to support processing multiple context changes in one
batch and name its new version MPCC. We list the new truth
value evaluation and link generation semantics for universal
formula in Fig. 3, as an example.

Fully understanding such semantics needs some knowledge
on truth value evaluation and link generation (for answering
the whether and how question, respectively). Here, we very
briefly highlight our ideas for the modification. PCC processes
a context change as one of four cases, namely, fully reusable
(the change does not affect C' and sub-formula f at all),
processing a single addition change (affecting C'), processing
a single deletion change (affecting C), and processing a
change that affects sub-formula f, incurring different levels of
reusability of previous checking results. Here, C' represents the
current C' value and C represents the last C' value. Similarly,
T/ L represents the new truth value/generated links and 7o/ Lo
represents the last truth value/generated links. MPCC needs to
process multiple context changes a time, and thus it partitions
the processing into four cases as well. The first and last
cases are the same as before, but the second case is for the
situation where there are multiple addition changes only (i.e.,
no deletion change), and the third case is for the situation
where there is at least one deletion change (i.e., multiple
deletion changes only, or both addition and deletion changes).
Such modifications are immaterial to the checking semantics
and thus are straightforward to apply. We ensure MPCC'’s
equivalence to PCC during the modifications.

Tlvo € C(f)la =

1) To[Vv € C(f)]as
if C has no change (i.e., C = Cy) and affected(f) = L;

2) Tolvo € C(Hla A Tlflbind((orory.cr A - A Tlflbind((o.0, 00 | T2 € C = Co,

if C' has addition changes only;

3 T A Tolflbind((v.e1y,00 A -+ A Tolflbind((o,em).0) A T lbind((wuny,00 2 -+ A Tl lbind(w,yn)0) | 23 € CoNCyyi € C = C,
if C has any deletion change (deletion changes only, or both addition and deletion changes);

CEiEC,

A T AT loind(w,e1),0) A -+ A T lbind((w,2m),0)
if affected(f) = T.

Lvo € C(f)la =

1) Lo[Vv € C(f)]as
if C has no change (i.e., C = Cy) and affected(f) = L;

2) Lo[Vv € C(f)]a U {I|l € {(violated, {(v,z:)})} ® ‘C'[f]bind((v,zi),a) Y|lzieC—Co A T[ﬂbind((v,z%),a) =1,

if C' has addition changes only;

3) {l|l € {(ViOIatedv{(U7mi)})} @ ﬁo[f}bind(iv,xi)a) } U {l|l € {(ViOIated,{(vai)})} ® ‘a[f]bind((v,yi)a) } ‘ x; € Co N C A

T loind((w,z:),00 = L+ % € C = Co A T flpind((v,:),0) =

if C' has any deletion change (deletion changes only, or both addition changes and deletion changes);
4) {l|l € {(violated, {(v,z:)})} ® ‘C'[f]bind((u,zi),a) Ylazie C A T[f]bind((v,z,;),a) =1,

if affected(f) = T.

Fig. 3: Truth value evaluation and link generation for universal formula in MPCC.

V. EVALUATION

In this section, we evaluate GEAS’ efficiency and effec-
tiveness and compare it with existing work. We also evaluate
GEAS’ practical performance in real-world scenarios.

A. Research Questions (RQI-3)

We aim to answer the following three research questions.

RQ1: How serious is the inconsistency-missing problem
with BatchSched for checking context consistency?

RQ2: How efficient is GEAS in context inconsistency detec-
tion, as compared with existing work (i.e., ImmedSched and
BatchSched)?

RQ3: How effective is GEAS in terms of avoiding missing
context inconsistencies in the detection, as compared with
existing work (i.e., BatchSched)?

Answering RQI1 motivates our GEAS work. Answering
RQ2 validates how GEAS improves the efficiency for context
inconsistency detection. Answering RQ3 validates how GEAS
avoids missing context inconsistencies in the detection. They
together justify GEAS’ necessity and usefulness.

B. Experimental Design and Setup

To answer the three research questions, we design two
dependent variables. Checking time is for measuring the
efficiency of context inconsistency detection (processing all
context changes). Inconsistency missing rate (or missing rate
for short) is for measuring the effectiveness of context in-
consistency detection, which is defined by the proportion of
detected context inconsistencies against all inconsistencies in
theory.

With respect to these dependent variables, we design the
following three independent variables, whose settings can
affect the measurement of our dependent variables:

o Scheduling strategy. We considered three scheduling
strategies: ImmeSched, BatchSched and our GEAS.

e Batch window size. We controlled different sizes for the
batch window when applying BatchSched.

o Constraint checking technique. We considered four state-
of-the-art context constraint checking techniques, namely,
ECC [1], PCC [6] (by MPCC), Con-C [7] and GAIN [5].
They can all work with the three scheduling strategies.

For research question RQ1, we measure the checking time
and missing rate for BatchSched in context inconsistency
detection. We controlled the batch window size from one to
six. The upper bound was decided by the fact that BatchSched
caused a quickly increasing missing rate when the window size
grew, and that the rate was already above 60% at size = 6,
which is undesirable and suggests that BatchSched can hardly
be useful in practice with an even larger window size. For
research question RQ2, we measure the checking time under
12 strategy-technique combinations (three scheduling strate-
gies and four constraint checking techniques). For research
question RQ3, we measure the missing rate also under the
aforementioned 12 strategy-technique combinations.

We selected as our experimental subject the SUTPC applica-
tion, which was from existing work on evaluating context con-
straint checking techniques ECC, PCC, Con-C and GAIN. The
application is accompanied with 21 consistency constraints
and 1.6 million 24-hour taxi data, concerning the checking of
taxis’ GPS location, driving speed, direction, service status,
and so on. These data concern 760 taxis from one company
in a city in China. Context changes were derived from the
taxi data and their quantity (over 4 million) relied on the
application’s functions, e.g., planning an optimal driving route
or monitoring a hot area’s traffic conditions. In experiments,

E)
2 40 |- 37.5 ‘ ‘ ‘ ‘ |
<
2 30 —— ImmedSched —m— BatchSched %
= 20 - .
& X 12.6 95 o
2 or . |
8 0L | | | | | | —
5 1 2 3 4 5 6
Batch window size

Fig. 4: Checking time comparison for BatchSched.
® 100% T T T T T
N—
%‘} 75% |- 5249 58.7% 62.7% 65.3% _|
= 50% |- —
2 sal — ImmedSched —m— BatchSched L
172}
2]
= Us I I I R

1 2 3 4 5 6
Batch window size

Fig. 5: Missing rate comparison for BatchSched.

we controlled to process these context changes in sequence
and proceed only when previous checking completed. This
may cause a low-efficiency technique (e.g., ECC) to spend
over 24 hours to process all changes, but fully respects the
technique’s nature as no change would be skipped in the
checking (i.e., no buffer overflow due to too slow processing).
As a result, different constraint checking techniques would
only cause different efficiency levels, but would not affect the
measurement of the missing rate, which is fully decided by
the scheduling strategy (our focus).

All experiments were conducted on a desktop PC with an
Intel® Core”™ i7-6700 CPU @3.40 GHz and 16GB RAM.
This machine is installed with MS Windows 10 Professional
and Oracle Java 8.

C. Experimental Results and Analyses

In the following, we answer the preceding three research
questions in turn.

RQ1 (motivation). We conducted experiments with differ-
ent batch window sizes for BatchSched. As the efficiency of
a specific constraint checking technique does not affect the
missing rate in our experiments as mentioned earlier, we fixed
the technique to be ECC. Using ImmedSched’s data as the
baseline, we report BatchSched’s performance data (checking
time and missing rate) in Fig. 4 and Fig. 5.

The blue lines represent ImmedSched’s checking time and
missing rate, whose values are not affected by the batch
window size. The red curves represent BatchSched’s checking
time and missing rate, whose values exhibit a steadily de-
creasing and increasing trend, respectively. Since ImmedSched
checked contexts upon each change, it detected all context
inconsistencies, accounting for a missing rate of 0%. However,
when it comes to BatchSched, we observe that with the growth
of the window size, the checking time was indeed reduced
(up to 83.0%), but the missing rate instead increased rapidly
(up to 65.3%). BatchSched worked faster than ImmedSched

since it was able to merge the processing of multiple context
changes (one to six) and this saved a lot of redundant checking
overhead. However, it also caused a high missing rate since
some context inconsistencies became undetectable if certain
context changes were processed in one batch.

We conclude our answer to research question RQ1:

BatchSched could improve the efficiency of context
inconsistency detection, but also caused a serious
inconsistency-missing problem. Its missing rate could be
up to 65.3% when its batch window size was 6.

RQ?2 (efficiency). We measured the checking time under 12
strategy-technique combinations (three scheduling strategies,
namely, ImmedSched, BatchSched and GEAS, and four con-
straint checking techniques, namely, ECC, PCC, Con-C and
GAIN). We use BatchSched-z to represent applying Batch-
Sched with a batch window size of x. By answering RQl,
we observe that the missing rate could be up to 65.3% when
the window size was six, which suggests that BatchSched can
hardly be useful in practice with an even larger window size.
Therefore, we in answering RQ2 consider three window sizes,
ie., 2, 4, 6, to be representative (1 is omitted as it makes
the scheduling reduced to ImmedSched). We also consider
BatchSched with a batch window size of the value averaged
from all window sizes adaptively tuned by GEAS. The value
was 4.9 and thus we made it 5 for integer. The corresponding
schedule is named BatchSched-mimic. We report efficiency
data (checking time) in Fig. 6 and Fig. 7.

The checking time is compared in a normalized way (ECC
data as 100%) and in hour, respectively, in Fig. 6 and Fig. 7.
We observe in Fig. 7 that GEAS reduced the checking time
significantly for constraint checking techniques, in particular
for ECC (up to 84.5%). This is because ECC is most ineffi-
cient by checking in a non-incremental and non-parallel way,
and GEAS helped it most significantly by compressing the
checking of extremely a lot of context changes in a batch
way. The efficiency improvement brought by GEAS for PCC
is not obvious in Fig. 7, since PCC itself is already the most
efficiency checking technique among all.

We observe in Fig. 6 that GEAS reduced the checking
time greatly for all constraint checking techniques, e.g., 84.5%
reduction for ECC, 84.4% for Con-C, 83.5% for GAIN and
29.9% for PCC. In other words, compared with ImmedSched,
all four constraint checking techniques were improved in
efficiency when equipped with our GEAS, i.e., 645% improve-
ment for ECC, 641% for Con-C, 606% for GAIN and 143%
for PCC. What is worth noticing is that although BatchSched-
mimic used the mimicked batch window size (5), slightly
larger than GEAS’ averaged window size (4.9), its efficiency
was still inferior than that of GEAS.

We conclude our answer to research question RQ2:

GEAS was efficient in context inconsistency detection.
It achieves 143—645% efficiency improvement compared
with ImmedSched, when equipped with existing con-
straint checking techniques, e.g., ECC, PCC, Con-C and
GAIN.

| |
100% |- 100% 100%97 5% 100% 100% BE mmedSched]
§ 80.7% Hm BatchSched-2
= el 70.4% 146%40 10 Bm BatchSched-4 .
E Hm BatchSched-6
fb 0% 50.9% 50.8% 50.2% | H® BatchSched-mimic
b - i
£ Oz GEAS
=
3 25.4% 25 57% 25.2%
Q - .
s " I 17 17 19520, 5%15 6% I 16.9%2% 2%16 5%
0L i
T
ECC Con-C GAIN
Constramt checking techniques
Fig. 6: Efficiency (checking time) comparison (normalized with ECC data as 100%).
g inconsistencies (missing rate of 62.7%). This is because it is
S 40 : : : not the batch window size that avoids missing inconsistencies
o 30| ®— ImmedSched BatchSched-2 | 4 the detection, but how the window is tuned does, as we
g 20l —8— BatchSched-4 —A— BatchSched-6 ||) d for the GEAS desi li
s —+— BatchSched-mimic —@— GEAS analyzed for the esign earlier.
£ 10~ We conclude our answer to research question RQ3:
'M
) (O] =— ' ' —
i) ECC PCC Con-C GAIN GEAS was effective in context inconsistency detection. It
O

Constraint checking techniques

Fig. 7: Efficiency (checking time) comparison (in hour).

100% : : ‘ :
—@— ImmedSched —~— BatchSched-2 —@— BatchSched-4
~ —a— BatchSched-6 —— BatchSched-mimic —@— GEAS
L 75%|l |
= 65.3%
2 e —
g s0%| 58.7% |
20 * * * %39.2%
Z
2L 5% .
=
op = * * ® 0% |
ECC PCC Con-C GAIN

Constraint checking techniques

Fig. 8: Missing rate comparison.

RQ3 (effectiveness). We finally evaluate the missing rate
for context inconsistency detection. Since we controlled the
processing of context changes in sequence to proceed only
when previous checking completed, we would be able to
obtain the theoretical upper bound (e.g., all context incon-
sistencies), which is used for calculating the missing rate.
Also, due to such experimental controlling, the missing rate
is decided only by the scheduling strategy, no matter which
constraint checking technique is used, as shown in Fig. 8.
We observe that GEAS missed zero context inconsistency, as
ImmedSched did. Compared to GEAS, BatchSched caused
enormous context inconsistencies missed (39.2-65.3%), and
such inconsistency-missing problem would seriously impair
the correct functioning of applications running on the contexts.

What is worth mentioning is that although BatchSched-
mimic adopted a batch window of size close to what was
averaged for GEAS, it only achieved similar checking ef-
ficiency (still a little bit inferior), while its effectiveness
was clearly worsen than GEAS by largely missing context

completely avoided missing context inconsistencies in the
detection, while BatchSched caused 39.2—-65.3% missing
rate.

D. Real-world Scenarios

We briefly report GEAS’ performance in real-world sce-
narios. We used the same taxi data, but had all strategy-
technique combinations process context changes according to
actual timestamps associated with the data. This setting would
no longer guarantee context changes not skipped (if processed
too slowly, e.g., for ECC). We observe that GEAS still
guaranteed its zero missing rate, combined with any of the four
constraint checking techniques, while ImmedSched caused 0-
95.4% missing rate and it is 39.2-67.7% for BatchSched.

Besides, we controlled to increase the workload by duplicat-
ing context changes multiple times. Under the same setting for
rush-hour taxi data, ImmedSched caused 93.1-97.8% missing
rate; BatchSched achieved 100-689% efficiency improvement
as compared to ImmedSched, but caused 49.9-93.7% missing
rate; our GEAS achieved 106-935% efficiency improvement
and incurred zero missing rate for all constraint checking
techniques except ECC. We note that in such a dynamic testing
scenario, achieving a zero missing rate is probably impossible,
as network connection and data parsing also took time and this
caused checking not in right time, leading to some missed
context inconsistencies.

In summary, we validate our GEAS’ high efficiency and ef-
fectiveness both in controlled experiments and under practical
settings.

E. Threats to Validity

Our experiments chose only one application and this can
cause the threat to external validity of our conclusion. We
alleviate this threat by three efforts. First, the application, as
well as its accompanied taxi data and consistency constraints,

were from existing work on context constraint checking. Sec-
ond, the data set itself is huge, containing 1.6 million raw data
and over 4 million corresponding context changes, alleviating
the possibility of special data leading to experimental bias.
Third, the taxi data have intervals varying in 20-3000 ms for
consecutive data. Our experiments tried two ways to use the
data, one by a static setting that controlled the checking to pro-
ceed only when previous checking completed, respecting each
checking technique’s characteristics (e.g., avoiding skipping
context changes due to low efficiency), another by a dynamic
setting that compared each alternative’s potential along with
real-world timestamps.

The internal validity of our conclusion may be threatened
as our derived suspicious pairs are conservative. Thus, the
efficiency results may not precisely reflect GEAS’ true capa-
bility. Nevertheless, even with such conservation, GEAS still
achieved amazing efficiency improvement. Moreover, we have
formalized and proved GEAS’ correctness.

VI. RELATED WORK

Context-aware adaptive applications, e.g., ConChat [18],
ActiveCampus [19], SeNIE [20], TourApp [21], Phone-
Adapter [22], Locale [23] and Navia [24], are gaining increas-
ing research attention. Various application frameworks and
middleware infrastructures, e.g., CARISMA [15], Gaia [25],
EgoSpaces [16], Lime [26], Cabot [6], CAPPUCINO [27],
Disnix [28] and Adam [29] have been proposed to support
context-aware programming and management of context data.
Increasing research work has identified additional challenges
in developing such applications safely and correctly [29]-[31].

One line of research work focusing on quality guarantee for
context-aware adaptive applications works along the context
validation way. Some pieces of work directly focus on context
inconsistency detection and resolution, aiming at identifying
problematic contexts or context inconsistencies among large
volumes of data and preventing applications from using them
directly. Among them, the efficiency is a major concern.
For example, ECC [1] checked contexts exhaustively, while
PCC [6] did in an incremental way by reusing previous
checking results. It achieves this by trading time with extra
space. Con-C [7] and GAIN [5] checked contexts in parallel
by exploiting multiple CPU and GPU threads, respectively.
Their focus is how to improve the checking efficiency, while
making the task scheduling always balanced. Detected context
inconsistencies can then be resolved in a heuristic way [4],
[32] or analytical way [3], [13], [33], such that applications
can run over consistent contexts, not behaving abnormally.

There are also some pieces of work focusing on detecting
inconsistencies in other software artifacts, e.g., XML docu-
ments [1], [8], [34], UML models [2], [35], data structures [3],
workflows [13] and distributed source code [36]. Their con-
cerned software artifacts typically change slowly or rarely, and
thus do not have an emergent requirement on efficiency.

This work echoes some findings in existing work on editing
script consistency [37] and unstable inconsistency suppres-
sion [10]. They all observe that earlier detected inconsistencies

can become unstable or disappearing if detected at other time
points. While the existing work focused on how to avoid such
consequences, this work exploits this fact to smartly decide
when to schedule constraint checking such that the efficiency
can be improved. Besides, this work is also generic and can
be easily applicable to existing constraint checking techniques,
complementing and orthogonal to current efficient constraint
checking efforts.

VII. CONCLUSION

In this paper, we studied the context inconsistency detection
problem. Existing context constraint checking techniques tried
different incremental and parallel ways to improve the check-
ing efficiency, but they have to cooperate with the immediate
scheduling strategy in order not to miss context inconsisten-
cies. This ensures the complete detection, but also limits the
efficiency. We addressed this problem by proposing our GEAS
approach, which adaptively tunes its batch window size, such
that the checking efficiency can be improved significantly,
and at the same time ensure zero missing rate for context
inconsistency detection.

Our GEAS approach is fully automated, achieving 143—
645% efficiency improvement. It is also generic, applicable to
existing context constraint checking techniques. Besides, we
have also formally analyzed GEAS and proved its correctness.

Our GEAS currently works in a conservative way. It sched-
ules constraint checking whenever adding a context change
into the current batch can potentially cause any context incon-
sistency missed. We plan to further refine GEAS to make it
more precise in this judgment. Also, we assume that all context
changes are at distinct time points. We are now proving that
processing context changes collected at the same time point
does not affect GEAS’ correctness as well, in avoiding missing
context inconsistencies.

ACKNOWLEDGMENT

This work was supported in part by National Basic Research
973 Program (Grant No. 2015CB352202), and National Nat-
ural Science Foundation (Grant Nos. 61472174, 61690204)
of China. The authors would also like to thank the support
from the Collaborative Innovation Center of Novel Software
Technology and Industrialization, Jiangsu, China.

REFERENCES

[1] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin, “xlinkit: A
consistency checking and smart link generation service,” ACM Trans-
action on Internet Technology (TOIT), vol. 2, no. 2, pp. 151-185, may
2002.

[2] A. Egyed, “Instant consistency checking for the uml,” in Proceedings
of 29th International Conference on Software Engineering (ICSE),
Shanghai, China, May 2006, pp. 381-390.

[3] B.Demsky and M. C. Rinard, “Goal-directed reasoning for specification-
based data structure repair,” IEEE Transactions on Software Engineering
(TSE), vol. 32, no. 12, pp. 931-951, 2006.

[4] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Heuristics-based
strategies for resolving context inconsistencies in pervasive computing
applications,” in Proceedings of the 28th International Conference on
Distributed Computing Systems (ICDCS), Beijing, China, Jun 2008, pp.
713-721.

[5]

[6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Sui, C. Xu, S. C. Cheung, W. Xi, Y. Jiang, C. Cao, X. Ma, and
J. Lu, “Hybrid CPU-GPU constraint checking: Towards efficient context
consistency,” Information and Software Technology (IST), vol. 74, pp.
230-242, 2016.

C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Partial constraint checking
for context consistency in pervasive computing,” ACM Transaction on
Software Engineering and Methodology (TOSEM), vol. 19, no. 3, pp.
9:1-9:61, Jan 2010.

C. Xu, Y. Liu, S. C. Cheung, C. Cao, and J. Lu, “Towards context con-
sistency by concurrent checking for internetware applications,” Science
China Information Sciences, vol. 56, no. 8, pp. 1-20, Aug 2013.

S. P. Reiss, “Incremental maintenance of software artifacts,” vol. 32,
no. 9, pp. 113-122, 2006.

C. Xu and S. C. Cheung, “Inconsistency detection and resolution for
context-aware middleware support,” in Proceedings of the Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE/ESEC),
vol. 30, no. 5. Lisbon,Portugal: ACM, 2005, pp. 336-345.

C. Xu, W. Xi, S. C. Cheung, X. Ma, C. Cao, and J. Lu, “Cina:
Suppressing the detection of unstable context inconsistency,” IEEE
Transactions on Software Engineering (TSE), vol. 41, no. 9, pp. 842—
865, 2015.

M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and Z. Wang,
“Context-aware adaptive applications: Fault patterns and their automated
identification,” IEEE Transactions on Software Engineering (TSE),
vol. 36, no. 5, pp. 644-661, Sep/Oct 2010.

C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “On impact-oriented
automatic resolution of pervasive context inconsistency,” in Proceedings
of the Joint Meeting on European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE/ESEC), Dubrovnik, Croatia, Sep 2007, pp. 569-572.
C. Chen, C. Ye, and H. A. Jacobsen, “Hybrid context inconsistency
resolution for context-aware services,” in Proceedings of the 2011 IEEE
International Conference on Pervasive Computing and Communications
(PERCOM), Seattle, Washington, USA, Mar 2011, pp. 10-19.

H. Lu, W. K. Chan, and T. H. Tse, “Testing pervasive software in the
presence of context inconsistency resolution services,” in Proceedings
of the 30th International Conference on Software Engineering (ICSE),
Leipzig, Germany, May 2008, pp. 61-70.

L. Capra, W. Emmerich, and C. Mascolo, “Carisma: Context-aware re-
flective middleware system for mobile applications,” IEEE Transactions
on Software Engineering (TSE), vol. 29, no. 10, pp. 929-945, 2003.
C. Julien and G. C. Roman, “Egospaces: Facilitating rapid development
of context-aware mobile applications,” IEEE Transactions on Software
Engineering (TSE), vol. 32, no. 5, pp. 281-298, May 2006.

M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum, “Multi-layer faults
in the architectures of mobile, context-aware adaptive applications,” The
Journal of Systems and Software (JSS), vol. 83, no. 6, pp. 906-914, 2010.
A. Ranganathan, R. H. Campbell, A. Ravi, and A. Mahajan, “Conchat: a
context-aware chat program,” IEEE Pervasive Computing, vol. 1, no. 3,
pp. 51-57, 2002.

W. G. Griswold, R. Boyer, S. W. Brown, and M. T. Tan, “A component
architecture for an extensible, highly integrated context-aware computing
infrastructure,” in Proceedings of the 25th International Conference on
Software Engineering (ICSE), Oregon, USA, 2003, pp. 363-372.

M. Sama, V. Pacella, E. Farella, L. Benini, and B. Ricco, “3dID: A
low-power, low-cost hand motion capture device,” in Proceedings of
the Conference on Design, Automation and Test in Europe: Designers’
Forum (DATE), ser. DATE’06. European Design and Automation
Association, 2006, pp. 136-141.

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

(36]

[37]

Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated generation of
context-aware tests,” in Proceedings of the 29th International Confer-
ence on Software Engineering (ICSE), ser. ICSE’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 406—415.

M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum, “Model-based
fault detection in context-aware adaptive applications,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), ser. SIGSOFT’08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 261-271.

“Locale,” http://www.twofortyfouram.com/.

“Navia,” http://induct-technology.com/.

A. Ranganathan and R. H. Campbell, “An infrastructure for context-
awareness based on first order logic,” Personal and Ubiquitous Com-

puting (PUC), vol. 7, no. 6, pp. 353-364, 2003.
A. L. Murphy, G. P. Picco, and G. C. Roman, “LIME: A coordination

model and middleware supporting mobility of hosts and agents,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 15, no. 3, pp. 279-328, 2006.

D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, D. Conan, and
N. Pessemier, “Enabling context-aware web services: A middleware
approach for ubiquitous environments,” in Enabling Context-Aware Web
Services: Methods, Architectures, and Technologies, M. Sheng, J. Yu,
and S. Dustdar, Eds. Chapman and Hall/CRC, May 2010, pp. 113—
135.

S. van der Burg and E. Dolstra, “A self-adaptive deployment framework
for service-oriented systems,” in Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). New York, NY, USA: ACM, 2011, pp. 208-217.
C. Xu, S. C. Cheung, X. Ma, C. Cao, and J. Lu, “Adam: Identifying de-
fects in context-aware adaptation,” The Journal of Systems and Software
(JSS), vol. 85, no. 12, pp. 2812-2828, 2012.

C. Q. Adamsen, G. Mezzetti, and A. Moller, “Systematic execution of
android test suites in adverse conditions,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA), ser.
ISSTA 2015. Baltimore, MD, USA: ACM, 2015, pp. 83-93.

N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “SIG-Droid:
Automated system input generation for android applications,” vol. 00,
pp. 461471, 2015.

J. Lobo, J. Chomicki, and S. Naqvi, “Conflict resolution using logic
programming,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 15, pp. 244-249, Jan/Feb 2003.

Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei,
“Supporting automatic model inconsistency fixing,” in Proceedings of
the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (FSE/ESEC). ACM, 2009, pp. 315-324.

C. Nentwich, W. Emmerich, A. Finkelsteiin, and E. Ellmer, “Flexible
consistency checking,” ACM Transaction on Software Engineering and
Methodology (TOSEM), vol. 12, no. 1, pp. 28-63, Jan 2003.

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in Proceed-
ings of the 30th International Conference on Software Engineering
(ICSE). Leipzig, Germany: ACM, May 2008, pp. 511-519.

A. Demuth, M. Riedl-Ehrenleitner, and A. Egyed, “Efficient detection of
inconsistencies in a multi-developer engineering environment,” in Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), Singapore, 2016, pp. 590-601.

T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-preserving edit
scripts in model versioning,” in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Silicon Valley, California, USA, Nov 2013, pp. 191-201.

